
Malware Software
A iArmoring

CircumventionCircumvention

Shmoocon 2008Shmoocon 2008
Offensive Computing, LLC

Danny Quist
Valsmith

dquist@offensivecomputing netdquist@offensivecomputing.net
valsmith@offensivecomputing.net

Offensive Computing - Malware Intelligence

Danny QuistDanny Quist

• Offensive Computing, CofounderOffensive Computing, Cofounder

• Ph.D. Student at New Mexico TechPh.D. Student at New Mexico Tech

• Reverse EngineerReverse Engineer

• Exploit DevelopmentExploit Development

• cDc/NSFcDc/NSF

Offensive Computing - Malware Intelligence

ValsmithValsmith

• Offensive Computing CofounderOffensive Computing, Cofounder

• Malware Analyst/Reverse Engineer

• Metasploit Contributor

• Penetration Tester/Exploit developer

• cDc/NSF

Offensive Computing - Malware Intelligence

Offensive Computing LLCOffensive Computing, LLC

• Community ContributionsCommunity Contributions
– Free access to malware samples

Largest open malware site on the Internet– Largest open malware site on the Internet
– ~350k hits per month

"It' lik ti i b t ith t• "It's like an anti-virus company, but without
that fake "We're better than you" attitude."

D Ait l- Dave Aitel
• Business Services

Offensive Computing - Malware Intelligence

Overview of TalkOverview of Talk

• Problem DiscussionProblem Discussion
• Software Armoring Techniques

C t D b i R i t• Covert Debugging Requirements
• Dynamic Instrumentation for Debugging
• OS Pagefault Assisted Covert Debugging
• Application – Generic AutounpackingApplication Generic Autounpacking
• Results

Offensive Computing - Malware Intelligence

What are the problems?What are the problems?

Malware analysis necessary for defenseMalware analysis necessary for defense

– Creating signaturesg g
– Understanding attacks (targeted/untargeted)
– Data mining trends and unknown threatsg
– Determining phylogeny of variants

Offensive Computing - Malware Intelligence

What are the problems?What are the problems?

Malware wants to stop us from analyzingMalware wants to stop us from analyzing
and understanding it

– Packing hinders our analysis
– Anti-analysis techniques
– Obfuscation hinders automation
– Automation is key to rapid analysis

Offensive Computing - Malware Intelligence

What is the problem?What is the problem?

• Huge number of malware samplesHuge number of malware samples
– Example: We have almost 300,000
– More hitting victims every dayMore hitting victims every day

• Analyst time is expensive
– Individual samples can take hours to analyzeIndividual samples can take hours to analyze

• We must automate the process to keep up
• Packers degrade automation• Packers degrade automation
• We need to automatically decrypt

malware!malware!

Offensive Computing - Malware Intelligence

Previous WorkPrevious Work
• Shadow Walker

– Rootkit Memory Hidingy g
– Jamie Butler, Sherrie Sparks

• PaX
Linux buffer overflow prevention– Linux buffer-overflow prevention

• OllyBonE
– Break on Execute for OllyDbg

J St t– Joe Stewart
• Memalyze

– Tracing memory access
– Skape

• PolyUnpack – Paul Royal et. al @ Georgia Tech
• Halvar’s VxClass auto-unpacker• Halvar s VxClass auto-unpacker

Offensive Computing - Malware Intelligence

GapsGaps

• The available solutions are detectableThe available solutions are detectable
• Not all are fully automatable

S ll t f• Smaller percentage of success
• Some rely on signature based techniques
• In some cases slow
• No one solution addresses all theseNo one solution addresses all these

problems

Offensive Computing - Malware Intelligence

What we will show youWhat we will show you

• Techniques that are a crucial step in theTechniques that are a crucial step in the
process of automating Malware decryption

• Example code that may help you in• Example code that may help you in
implementing your own automated
decryption toolsdecryption tools

• Ideas on what further steps are needed to
l th l l i t tisolve the malware analysis automation

problem

Offensive Computing - Malware Intelligence

What we will not showWhat we will not show

• This is research code not productionThis is research code, not production
• Proof-of-concept

h t d/ i l t li ti (– a short and/or incomplete realization (or
synopsis) of a certain method or idea(s) to
demonstrate its feasibility or a demonstrationdemonstrate its feasibility, or a demonstration
in principle, whose purpose is to verify that
some concept or theory is probably capable of p y p y p
exploitation in a useful manner
(wikipedia ftw)

Offensive Computing - Malware Intelligence

ImplicationsImplications

• Analysis automation now within our reachAnalysis automation now within our reach
• Obfuscation no longer a major obstacle

Abilit t 1000’ f fil idl• Ability to process 1000’s of files rapidly
• Malware authors will have to step it up

– Raising the bar
• Advanced tools/products can be developedd a ced too s/p oducts ca be de e oped

Offensive Computing - Malware Intelligence

Software Armoring Overview

Offensive Computing - Malware Intelligence

Software ArmoringSoftware Armoring

• Packing/EncryptionPacking/Encryption
• SEH Tricks
• VM DetectionVM Detection
• Debugger Detection
• Shifting Decode Frame• Shifting Decode Frame

Offensive Computing - Malware Intelligence

Packing/EncryptionPacking/Encryption

• Self-modifying Runtime CodeSelf modifying Runtime Code
– Small Decoder Stub
– Decompresses the main executablep
– Restores imports

• Play Tricks with Portable
Executables
– Hide the Imports
– Obscure relocations
– Encrypt/compress the executable

Offensive Computing - Malware Intelligence

Normal PE FileNormal PE File

Offensive Computing - Malware Intelligence

Packed PE FilePacked PE File

Offensive Computing - Malware Intelligence

Virtual Machine DetectionVirtual Machine Detection

• Single instruction detectionSingle instruction detection
– SLDT, SGDT, SIDT

See: Redpill Scoopy Doo OCVmdetect– See: Redpill, Scoopy-Doo, OCVmdetect
• Instructions for Privileged/Unprivileged

CPU dCPU mode
– VMs try to be efficient, some instructions

iinsecure
– Do not fully emulate x86 bug for bug

Offensive Computing - Malware Intelligence

Debugger DetectionDebugger Detection

• Windows APIWindows API
– IsDebuggerPresent() API call
– Checks PEB for magic bitg
– Bit toggling works

• Timing Attacks
– Issue RDTSC instruction, compare to known values
– Amazingly effective

Offensive Computing - Malware Intelligence

Debugger Detection (cont)Debugger Detection (cont.)

• Breakpoint DetectionBreakpoint Detection
– Int3 (0xCC) Instruction Scanning
– Checksumming of executableChecksumming of executable

• Hardware Debugging Detection
– Check CPU Flags for debug signaturesCheck CPU Flags for debug signatures

• SoftICE Detection
– Modification of Int3 ScanningModification of Int3 Scanning
– Checksumming
– BoundsChecker and other signaturesBoundsChecker and other signatures

Offensive Computing - Malware Intelligence

SEH TricksSEH Tricks

• Structured Exception HandlerStructured Exception Handler
• Used to handle errors in running code

M l ill l d thi f ti t• Malware will overload this function to
unpack code

• Debugger thinks SEH exceptions are for it
• Debugger diesgg

– Divide by 0

Offensive Computing - Malware Intelligence

Shifting Decode FramesShifting Decode Frames

• Execution is split at the basic block levelExecution is split at the basic block level
• Block is decoded, executed, and then

encoded againencoded again
• Hard to defeat!
• Implemented in Patchguard for Vista 64

and Windows Server 2003 64-bit

Offensive Computing - Malware Intelligence

Use Hardware for AnalysisUse Hardware for Analysis

• Nearly as capable as VM solutionsNearly as capable as VM solutions
• Just as cheap*

Al t i ibl t d t t• Almost impossible to detect
• Safe solutions available
• Real hardware control possible

– As will be demonstratedAs will be demonstrated

* Assuming software licensing costs* Assuming software licensing costs

Offensive Computing - Malware Intelligence

Cost ComparisonCost Comparison

Hardware SoftwareHardware

• Cheapest Dell $349

Software

• VMWare - $189p $
– Brand new
– Cheaper elsewhere

$
– XP $278.99 *
– Other solutions cheaper

– XP License included*
– Deepfreeze $45

Total cost: $394 Total cost: $467.99

* Assuming relevant US piracy laws followed

Offensive Computing - Malware Intelligence

Replacing Vmware SnapshotsReplacing Vmware Snapshots

• Faronics DeepfreezeFaronics Deepfreeze
– Implements copy on write protection

Analogous to VMWare snapshot– Analogous to VMWare snapshot
– Kernel driver

Not perfect and hackable (like anything)– Not perfect, and hackable (like anything)
– www.faronics.com

S f• Disk Image Safe Installation
– dd your drive in case Deepfreeze fails
– Last resort restoration

Offensive Computing - Malware Intelligence

Other Good ToolsOther Good Tools

• Firewire kernel debuggerFirewire kernel debugger
– WinDBG (thanks MSFT)

Syser Debugger• Syser Debugger
– www.sysersoft.com

S f C– SoftICE replacement
• Debuggers detectable (telock) so be

careful

Offensive Computing - Malware Intelligence

Software Armoring Achilles HeelSoftware Armoring Achilles Heel

If it executes,
it b k dit can be unpacked.

[htt // it t /fil / t ti /R 2006 U ki Vi T j d W df][http://www.security-assessment.com/files/presentations/Ruxcon_2006_-_Unpacking_Virus,_Trojans_and_Worms.pdf]

Offensive Computing - Malware Intelligence

Manual Unpacking

Offensive Computing - Malware Intelligence

UnpackingUnpacking

• How an Unpacker Works:How an Unpacker Works:
– Writes to an area of memory (decode)

Memory is read from (execute)– Memory is read from (execute)
– More writes to memory (optional re-encoding)

CPU O l E t M hi C d• CPU Only Executes Machine Code
• This process can be monitored
• Unpacking is directly related to timing

– At some point, it must be unpackedp , p

Offensive Computing - Malware Intelligence

Manual Unpacking ProcessManual Unpacking Process

• Consists of several stagesConsists of several stages
– Identify Packer Type

Find OEP or get process to unpacked state in– Find OEP or get process to unpacked state in
memory

– Dump process memory to file– Dump process memory to file
– Fixup file / rebuild Import Address Table (IAT)

Ensure file can now be analyzed– Ensure file can now be analyzed

Offensive Computing - Malware Intelligence

Manual Unpacking ProcessManual Unpacking Process

• Several methods to identify packer typeSeveral methods to identify packer type
– PEiD

Msfpescan– Msfpescan
– PEFile from Ero Carrera

• OC patched to harden against ~275k Malware• OC patched to harden against ~275k Malware
– Manually look at section names

Other packer scanners like– Other packer scanners like
• Protection-id
• Pe-scanPe-scan

Offensive Computing - Malware Intelligence

Manual Unpacking ProcessManual Unpacking Process

Offensive Computing - Malware Intelligence

Manual Unpacking ProcessManual Unpacking Process

• Methods to find OEP / unpacked memoryMethods to find OEP / unpacked memory
– OllyScripts

• http://www tuts4you com• http://www.tuts4you.com
• http://www.openrce.org

– OEP finder toolsOEP finder tools
• OEP finders for specific packers
• OEP Finder (very limited)(y)
• PE Tools / LordPe
• PEiD generic OEP finder

Offensive Computing - Malware Intelligence

Manual Unpacking ProcessManual Unpacking Process

Offensive Computing - Malware Intelligence

Manual Unpacking ProcessManual Unpacking Process
–Dump process memory to file

• OllyDump
• LordPE
• Custom tools

– Example:Example:
• OpenProcess()

ReadProcessMemory()• ReadProcessMemory()
• CreateFile()
• WriteFile()

Offensive Computing - Malware Intelligence

Manual Unpacking ProcessManual Unpacking Process

Offensive Computing - Malware Intelligence

Manual Unpacking ProcessManual Unpacking Process
– Fixup file / rebuild Import Address Table (IAT)p p ()

• ImportRec probably best tool
• Revirgin by +Tsehp
• Manually with a hex editor (tedious)• Manually with a hex editor (tedious)

– IAT contains list of functions imported
• Very useful for understanding capabilities

Offensive Computing - Malware Intelligence

Manual Unpacking ProcessManual Unpacking Process

Offensive Computing - Malware Intelligence

Manual Unpacking ProcessManual Unpacking Process

• Ensure file can now be analyzedEnsure file can now be analyzed
• Clean disassembly should be available
• IAT should be visibleIAT should be visible
• Functions should be found
• Strings clear and useful• Strings clear and useful
• Manual unpacking process can be tedious
• Hardest part is generally finding the OEP• Hardest part is generally finding the OEP

Offensive Computing - Malware Intelligence

Manual Unpacking ProcessManual Unpacking Process

Offensive Computing - Malware Intelligence

Manual Unpacking ProcessManual Unpacking Process

• Show Manual Unpacking MovieShow Manual Unpacking Movie

Offensive Computing - Malware Intelligence

So What?So What?

• These are all variations on a themeThese are all variations on a theme
• There should be a generic way to debug

N d t dif t f d t l l l• Need to modify at a fundamental level
• Solution should be:

– Generic – Work across set of executables
– Efficient – Good performance for non-debugp g
– Undetectable (as much as possible)
– Extensible – Automation is the keyy

Offensive Computing - Malware Intelligence

Unpacking: The AlgorithmUnpacking: The Algorithm

• Track written memoryTrack written memory
• If that memory is executed, it’s unpacked

M t it• Must monitor:
– Memory writes
– Memory Executions

• Automate the processp

Offensive Computing - Malware Intelligence

Dynamic Instrumentation

Offensive Computing - Malware Intelligence

Dynamic InstrumentationDynamic Instrumentation

• Allows a running process to be monitoredAllows a running process to be monitored
• Intel PIN

– Uses Just-In-Time compiler to insert analysis codeUses Just In Time compiler to insert analysis code
– Retains consistency of executable
– Pintools – Use API to analyze code
– Good control of execution

• Instruction
• Memory access• Memory access
• Basic block

– Process Attach / Detach

Offensive Computing - Malware Intelligence

Dynamic InstrumentationDynamic Instrumentation

Offensive Computing - Malware Intelligence

Dynamic InstrumentationDynamic Instrumentation

Offensive Computing - Malware Intelligence

Dynamic InstrumentationDynamic Instrumentation

Offensive Computing - Malware Intelligence

ImplementationImplementation

• Use PIN hooks forUse PIN hooks for
– Memory Writes

Executes– Executes

• Track writes in hash table• Track writes in hash table

If ti itt d t d• If execution occurs on written data, dump

Offensive Computing - Malware Intelligence

ResultsResults

• Successful against:
Most commonly used packers– Most commonly used packers

– Packers that don’t self verify
– ~70% of packed malware in OC collection

Offensive Computing - Malware Intelligence

Dynamic Instrumentation - PackersDynamic Instrumentation Packers
• 153701 Samples Scanned / 54123 Detected Packers

UPX, 11984, 23%
Petite, 708, 1%

Other, 5723, 11%

, ,

AsProtect 2165 4%

TeLock, 1426, 3%

Ste@lth, 1378, 3%

NeoLite, 1078, 2%

AsPack, 4776, 9%

AsProtect, 2165, 4%

PeCompact, 11309,
21%

FSG, 5423, 10%

Armadillo, 6727, 13%

Offensive Computing - Malware Intelligence

Dynamic InstrumentationDynamic Instrumentation

• Instruction tracing for the following packersInstruction tracing for the following packers
– Aspack

FSG– FSG
– PECompact

UPX– UPX
• Created Simple Hello World Application
• Graphed results with Oreas GDE

Offensive Computing - Malware Intelligence

ResultsResults

Aspack 2.12

Offensive Computing - Malware Intelligence

ResultsResults

• Unpacking loop is easy to findUnpacking loop is easy to find

Offensive Computing - Malware Intelligence

Dynamic Instrumentation ResultsDynamic Instrumentation Results

• Generic Algorithm Described PreviouslyGeneric Algorithm Described Previously
works well

• All addresses verified by manual unpacking• All addresses verified by manual unpacking
• Addresses display clustering, which must

b t k i t tbe taken into account
• Attach / Detach is effective for taking

memory snapshots of an executable

Offensive Computing - Malware Intelligence

Dynamic Instrumentation CaveatsDynamic Instrumentation Caveats
• Detectable

M h k– Memory checksums
– Signature scanning

• Difficult to use (sorry)
• Extend this to work generically, non-g y

detectably
• Slow – ~1,000 times slower than nativeSlow 1,000 times slower than native

– Other methods/tools can be even slower
• Need faster implementation• Need faster implementation

Offensive Computing - Malware Intelligence

Towards a SolutionTowards a Solution

• Core operating system component that:Core operating system component that:

Monitors all memory– Monitors all memory

– Intercepts memory accessesIntercepts memory accesses

– Fast Interception and LoggingFast Interception and Logging

– Fundamental part of OSp

Offensive Computing - Malware Intelligence

Overloading the Memory
Management UnitManagement Unit

or

OS 101
H Vi l W kHow Virtual memory Works

Offensive Computing - Malware Intelligence

Intel Memory ManagementIntel Memory Management

• Each process has its own memoryEach process has its own memory

• Memory must be translate from Virtual toMemory must be translate from Virtual to
Physical Address

• Non-PAE Mode 32bit Processors use 2
page indexes and a byte indexp g y

• Each process has its own Page Directoryp g y

Offensive Computing - Malware Intelligence

Example Memory TranslationExample Memory Translation
Virtual Address

0 (LSB)31

CPU References Virtual Memory Address

[Microsoft Windows Internals, Fourth Edition, Microsoft Press]

Offensive Computing - Malware Intelligence

Example Memory TranslationExample Memory Translation
Page Directory Index Page Table Index Byte Index

0 (LSB)31

Virtual Page Number

10 Bits 10 Bits 12 Bits

[Microsoft Windows Internals, Fourth Edition, Microsoft Press]

Offensive Computing - Malware Intelligence

Example Memory TranslationExample Memory Translation
Page Directory Index Page Table Index Byte Index

0 (LSB)31

Virtual Page Number

10 Bits 10 Bits 12 Bits

PFN
CR3 contains process Page Directories

CR3
Page Directories

(C t i th PDE)(Contains the PDE)

[Microsoft Windows Internals, Fourth Edition, Microsoft Press]

Offensive Computing - Malware Intelligence

Example Memory TranslationExample Memory Translation
Page Directory Index Page Table Index Byte Index

0 (LSB)31

Virtual Page Number

10 Bits 10 Bits 12 Bits

PFN PTE

CR3
Page Directories

(C t i th PDE)
Page Tables

(C t i th PTE)(Contains the PDE) (Contains the PTE)

[Microsoft Windows Internals, Fourth Edition, Microsoft Press]

Offensive Computing - Malware Intelligence

Example Memory TranslationExample Memory Translation
Page Directory Index Page Table Index Byte Index

0 (LSB)31

Virtual Page Number

10 Bits 10 Bits 12 Bits

PFN PTE Address Desired Page

CR3
Desired Byte

Page Directories
(C t i th PDE)

Page Tables
(C t i th PTE)

Physical Address
S(Contains the PDE) (Contains the PTE) Space

[Microsoft Windows Internals, Fourth Edition, Microsoft Press]

Offensive Computing - Malware Intelligence

MMU Data StructuresMMU Data Structures

• Page Directory Entry is hardware definedPage Directory Entry is hardware defined
– Contains permissions, present bit, etc.

• Page Table Entry also hardware defined
Permissions (Ring0 vs all others)– Permissions (Ring0 vs. all others)

– Present bit (paged to disk or not)
“U ” d fi d bit (f OS)– “User” defined bits (for OS)

Offensive Computing - Malware Intelligence

Virtual Address TranslationVirtual Address Translation

• Translation Lookaside Buffer (TLB) isTranslation Lookaside Buffer (TLB) is
major source of optimization

• Hardware resolves as much as possibleHardware resolves as much as possible
• Invokes page fault handler when

– Page is not loaded in RAMPage is not loaded in RAM
– Incorrect privileges
– Loaded, but mapped with demand pagingLoaded, but mapped with demand paging
– Address is not legal (out-of-range)

• All indicated by special fieldsAll indicated by special fields

Offensive Computing - Malware Intelligence

Intel TLB ImplementationIntel TLB Implementation

• Two TLBs maintainedTwo TLBs maintained
– Data DTLB

Instructions ITLB– Instructions ITLB

• ITLB more optimized than DTLB• ITLB more optimized than DTLB
– Less lookups for instructions == faster code

DTLB d l– DTLB accessed less

Offensive Computing - Malware Intelligence

Intel TLB PopulationIntel TLB Population
• Data TLB

– Address is cached upon lookup

mov eax dword ptr [eax]mov eax, dword ptr [eax]

• Instruction TLB
– Address is cached upon execution

mov ecx, dword ptr [eax], p []
mov [eax], 0xC3 // 0xC3 is a near ret
call eax
mov [eax], ecx[],

Offensive Computing - Malware Intelligence

INTRODUCING SAFFRON

Offensive Computing - Malware Intelligence

Introducing SaffronIntroducing Saffron
• Intel PIN and Hybrid Page Fault HandlerIntel PIN and Hybrid Page Fault Handler

• Inspired by OllyBonE (Joe Stewart, DC14)p y y (,)

• Designed for 32-bit Intel x86 CPUsg

• Replaces Windows 0x0E Trap Handler

• Logs memory accesses

Offensive Computing - Malware Intelligence

START

Is the virtual address
t i th h

HARDWARE OPERATING SYSTEM
START

present in the cache

Is it paged to disk? Retrieve from disk

PA

No

No No

Yes

Yes

Walk the page directory
Are permissions

correct?

Return
address via

IRETD

AG
E FAU

LT IN
T 0E

Yes

Yes

Is the PTE valid?Return the
address Return

error

No No

Yes
error

OUR CODEOUR CODE

Offensive Computing - Malware Intelligence

Translated (stolen) VersionTranslated (stolen) Version

Offensive Computing - Malware Intelligence

Offensive Computing - Malware Intelligence

Process MonitoringProcess Monitoring

• MechanismMechanism
– Overloading of supervisor bit in page fault

handler
– Mark supervisor bit on each valid PTE
– Invalidate the page in the TLB with INVLPG

• Finding Memory
– All process memory must be found
– Iterate through all pages for a process
– Read PE Header and find sections

Offensive Computing - Malware Intelligence

Trap to Page Fault HandlerTrap to Page Fault Handler

• Determine if a watched processDetermine if a watched process

• Unset the supervisor bit• Unset the supervisor bit

L d th i t th DTLB• Loads the memory into the DTLB

• Resets supervisor bit

Offensive Computing - Malware Intelligence

Modifying the AutounpackerModifying the Autounpacker

• Watch for written pages via ITLBWatch for written pages via ITLB

• Monitor for executions into that page• Monitor for executions into that page

M k Add O i i l E t P i t• Mark Address as Original Entry Point

• Dump memory of the process

Offensive Computing - Malware Intelligence

ResultsResults

• Reads writes and executes are exposedReads, writes, and executes are exposed
• Program execution can be tracked,

controlledcontrolled
• Memory reads, writes are extremely

tapparent
• Executions only show for each individual

page
• Very Fast!y

Offensive Computing - Malware Intelligence

Autounpacker ResultsAutounpacker Results

• Effective method for bypassing detectionEffective method for bypassing detection
– SEH decode problem is easily solved

– Memory checksum
• No process memory is modifiedNo process memory is modified
• Good dumps obtained

– Effective across wide range of packers

Offensive Computing - Malware Intelligence

Autounpacking CaveatsAutounpacking Caveats

• System RequirementsSystem Requirements
– Windows XP, SP2

No Data Execution Prevention (DEP)– No Data Execution Prevention (DEP)
– Single CPU

• Disable multiple CPUs in BIOS• Disable multiple CPUs in BIOS
• /ONECPU flag in boot.ini

– 32-bit Only (could be ported to 64bit)– 32-bit Only (could be ported to 64bit)

Offensive Computing - Malware Intelligence

Big AnnouncementBig Announcement

Technique now works on Vmware 6

Offensive Computing - Malware Intelligence

Autounpacking CaveatsAutounpacking Caveats

• Real Hardware / VMWare 6 0 or higherReal Hardware / VMWare 6.0 or higher
– Virtual Machines (Older versions of Vmware)

• Play their own tricks with the ITLB• Play their own tricks with the ITLB
• Extremely detectable

– Real Hardware Take proper precautionsReal Hardware Take proper precautions
• Restoration procedure
• Isolated network

• Must not have a kernel debugger attached
• Hilarity will ensue (silly TeLock)y (y)

Offensive Computing - Malware Intelligence

Demo of UnpackingDemo of Unpacking

• Demonstrate Saffron PFHDemonstrate Saffron PFH

Offensive Computing - Malware Intelligence

Future WorkFuture Work

• Initial release of Saffron-DIInitial release of Saffron DI
Blackhat USA 2007

• Packaged Version of Saffron-Kernel
D d d ki– Drag and drop unpacking

• Offensive Computing Integration
– Any day now ™

Offensive Computing - Malware Intelligence

Questions?Questions?

• Paper presentation code available at• Paper, presentation, code available at

www.offensivecomputing.netg
• Thanks to:

– Lorie Liebrock, Houdini, Skape, Bugcheck, Skywing, Ty Bodell,
Uninformed #vaxUninformed, #vax

