

0x0000

a great fool in my life i have been
i have squandered 'til pallid and thin

hung my head in shame
and refused to take blame

for the darkness i know i've let win
j knapp

VulnCatcher:
Fun with Programmatic Debugging

atlas

atlas@r4780y.com
http://atlas.r4780y.com

mailto:atlas@r4780y.com

0x0001 Who am I

● Scattered past in computing
● Insecurity Researcher
● Captain 1@stplace
● Father/Husband
● Curious fellow (sleepless too)

0x0100 Programmatic Debugging

● Debugging other processes from your
(my) favorite language

● Accessing and Influencing CPU and
Memory state of a process in a
programmatic fashion
– Logic and other language constructs

0x0101 Explosion

● Several key programmatic debuggers:
– PyDBG – Pedram (part of Pai Mei)
– Immunity Debugger – Immunity Sec
– Vtrace – Invisigoth (Vivisect)
– NoxDbg – Lin0xx (first Ruby debugger)

(This talk will focus on Vtrace)

0x0102 What can we do?

● Live Patching? Fun with Hex
– LivePatch

● Live Dumping?
– LiveOrganTransplant

● Process Grep?
– Visi's memgrep

● Vampyre Jack SSHD
– In progress by drb and myself

0x0103 What can we do?

● everything else that GDB or Olly can do,
only better

● interactive python debugger
– especially nice with searchMemory() and

traceme()
– automate frame interpretation

● what do you want to do?

0x0200 Vulnerabilities

● what can we do to encourage vulns to
suddenly appear?
– fuzzing on its own is so ghetto!

● rather, what can we watch/do to catch
indications of vulnerability?

0x0300 Buffer Overflows?

● custom Breakpoints at key functions
● at break:

– Stack-Analysis for Parameters
– Buffer-Analysis for Size

● more empirical than static analysis

0x0301 vtrace attach

from vtrace import *
me = getTrace()
me.attach(<pid>)
me.addBreakpoint(MemcpyBreaker(me))
me.setMode("RunForever", True)
me.run()

0x0302 memcpy()

● memccpy()/mempcpy()/memmove()
– check length of dest (%ESP + 0x4)

● HEAP (dlmalloc), check length field immediately
before the pointer to the dest

– heapptr – 4
– not always accurate.... copying partial chunks

● Stack, check distance to RET
– (%ebp + 4) – dest

● oh, if only that simple...

– compare with Copy Size (%ESP + 0xc)

0x0303 MemcpyBreaker

class MemcpyBreaker(BreakpointPublisher):
 def __init__(self):

 ...
 def notify(self, event, trace):
 eip=trace.getProgramCounter()
 esp=trace.getRegisterByName('esp')
 ebp=trace.getRegisterByName('ebp')
 copylen=trace.readMemoryFormat((esp + 0xc),AddrFmt)[0]
 retptr =trace.readMemoryFormat((esp + 0x0),AddrFmt)[0]
 dest =trace.readMemoryFormat((esp + 0x4),AddrFmt)[0]
 src =trace.readMemoryFormat((esp + 0x8),AddrFmt)[0]
 destlen = getBufferLen(dest)
 if (copylen >= destlen):
 self.publish(BOFException(...))

0x0400 EBP-FREE SUBS?

● some subs don't start new stack frames
using %ebp
– Windows Libraries

● trouble measuring stack buffer length

0x0401 EBP-FREE SUBS?

● some disassembly required...
● possible solutions:

– Initial ESP Offset for Stack Allocation
– Sub Epilog Analysis

● ret $0x34
● add $0x34, %esp

– Sub Tracing for %esp Mods
● 'til ret do us part
● or jmp

– OR.... Stack Backtrace for RET

0x0402 Stack Backtracing

– start at %ESP
– loop up the stack by 4 bytes

● if the current 32-bit number is valid address (maps)

– look for a “call” opcode immediately before the address
● if so, is the target address valid?

● is it a call to memcpy or a call to a jmp to memcpy
● On Linux, does it target PLT?

– Once found, that location on the stack
becomes RET

– Subtract the stack variable from the newly
discovered RET location to find the length

0x0403 findRET()

def findRET(trace, stackptr = 0):
cont = True
stackptr = trace.getRegisterByName('esp')
while cont:
 stackptr -= 4
 address = trace.readMemoryFormat(stackptr, AddrFmt)[0]
 mymap = trace.getMap(address))
 if mymap != None: # valid address?
 buf = trace.readMemory(address-8, 8)
 for x in range(1,7):
 try:
 op = Opcode(buf[x:])
 if (op.off == 8-x and op.opcode[0] == 'c'):
 target = self.getOperandValue(op.dest)
 if trace.getMap(target) != None:
 # Possibly Check the Target of the call
 # * Costly and not entirely accurate
 return address

(check the latest atlasutils for a much improved version)

0x0404 findNextHeap()

def findNextHeap(me, address):
chain = getConnectedChain(me)
for x in xrange(1,len(chain)):
 if chain[x] > address and chain[x-1] <= address:
 return chain[x]

0x0405 getConnectedChain()

● Finds HEAP memory map
● Searches for the first HEAP chunk
● Traverses the forward pointers

– Keeps track and returns them as a list

● Works on Linux, not tried on Windows yet
● Look for it in the next release of atlasutils

0x0500 strcpy()/strncpy()

● strcpy – compare length of source and
destination
– dest pointer can be found at (%ESP + 0x4)
– source pointer can be found at (%ESP + 0x8)

0x0501 strcpy()/strncpy()

● strncpy – compare length of copy (size_t)
to destination
– dest pointer can be found at (%ESP + 0x4)
– size_t can be found at (%ESP + 0xc)

0x0502 strcat()/strncat()

● similar to strcpy/strncpy
● copies source and destination together
● difficult for coders to get right! (ie. often

exploitable)
● best to look into logic surrounding strcat()

limiting the size of both buffers

0x0600 printf()

– vfprinf covers printf and fprintf in Linux

● what's on the stack for format string?
● %ESP + 0x8

– does it live in a likely spot?
● Heap? Stack? .rodata?

– parse format string
● are there “%” characters in it?

0x0601 sprintf()

– vsprintf covers sprintf in Linux

● what's on the stack for format string?
● %ESP + 0x8

– does it live in a likely spot?
● Heap? Stack? .rodata?

– parse format string
● are there “%” characters in it?
● how long of a string can we create?

0x0602 snprintf()

– vsnprintf covers snprintf in Linux

● what's on the stack for format string?
● %ESP + 0x8

– does it live in a likely spot?
● Heap? Stack? .rodata?

– parse format string
● are there “%” characters in it?
● how long will the format string allow?
● how long can we write? (%ESP + 0xc)

0x0700 scanf/sscanf/fscanf

● parse format string
– scanf's is located at %ESP+0x4
– sscanf's and fscanf's are at %ESP + 0x8

● are there any “%s”?
● if so, where are we storing them?

– must check each string
● %45s against a buffer with 32 bytes

0x0800 gets()/fgets()

● lol.
● Just alert. Period.

0x0801 getc()/fgetc()

● loop for getc
● how big is the loop?
● simpler just to identify in disassembly and

write up... analysis for which loop
mechanism is used is more complex than
just eye-balling it.

0x0900 memchr()/memrchr()

● check size_t against length of string as in
memcpy

● may be used to look past a buffer as a
potential target or source of data

0x0a00 rep stos/rep movs

● special case.
● need to disassemble code to hook these.

– Set breakpoint one instruction before
– stepi() to reach start of opcode
– Check %ECX against buffer length

0x0b00 Format Strings

● used with printf/scanf families
● %c = 1 byte
● %* = * bytes (depends on the size)
● %#d = at least # bytes, possibly more!
● See man page for scanf or printf for more

0x0c00 Are there more?

● you tell me!
● programmatic debugging is fresh turf for

new ideas.
● “The force runs strong in your family...

Pass on what you have learned...”

0x0d00 choops

● hola y gracias amigos
– Dios
– jewel
– bug
– ringwraith
– menace
– 1@stplace
– invisigoth and K

